Aerial Image Labelling with Artificial Neural Networks

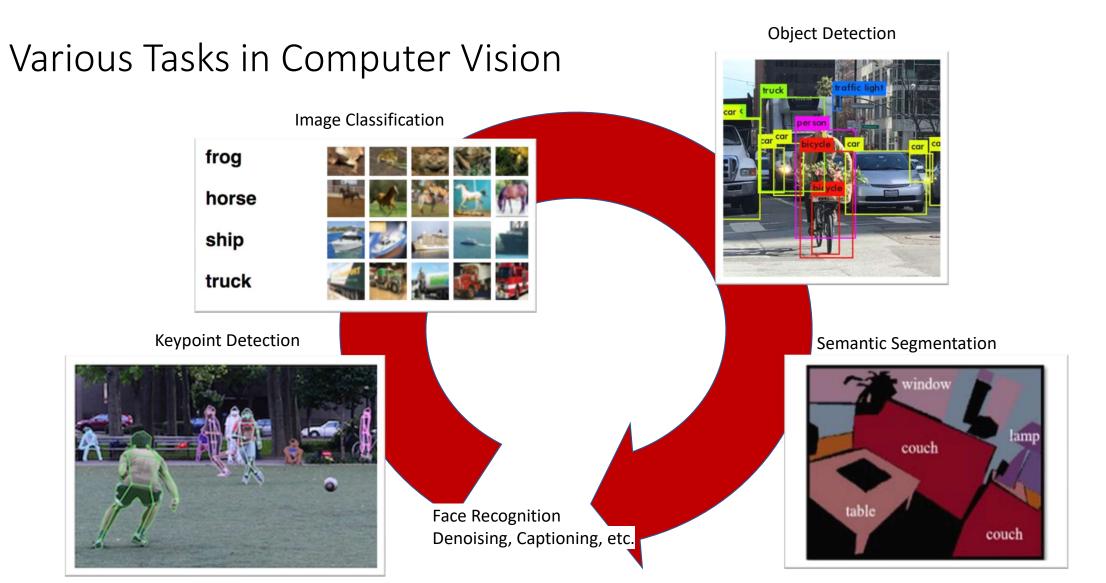
Microcosme consulting 2020

Agenda

Various Tasks in Computer Vision

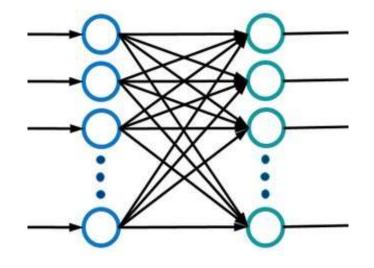
Learning from Images: Convolutional Neural Networks

Aerial Image Labelling / Building detection



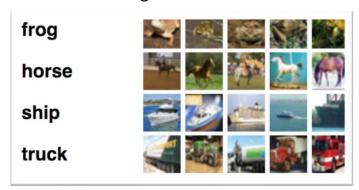
How to encode these tasks into a neural network?

Input size?



Output size?

Image classification

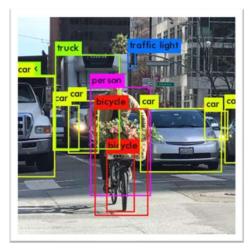


Input: Images size is width X height X nbr channels (channels: 3 colors if RGB).

Output: For each object category: Yes/No the image belongs to the category.

Yes/No statement can be inferred from a probability [0,1].

Object Detection

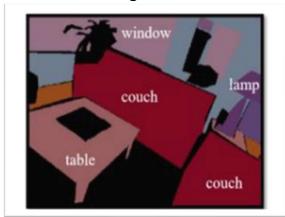


Input: Images size is width X height X nbr channels (channels: 3 colors if RGB).

Output: For each object category:

- Yes/No the object is present;
- Coordinates of center point (x_0, y_0);
- Width and height of bounding box.

Semantic Segmentation

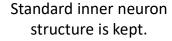


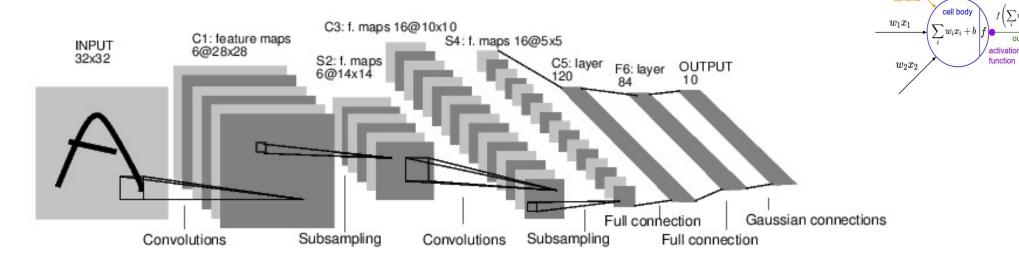
Input: Images size is width X height X nbr channels (channels: 3 colors if RGB).

Output: For each pixel, for each category: Yes/No the pixel belongs to the category.

Learning from Images: Convolutional Neural Networks (CNN)

Convolution is spanning on a range of input data to produce the resulting output. The same convolutional filter is applied translationally to the full image.

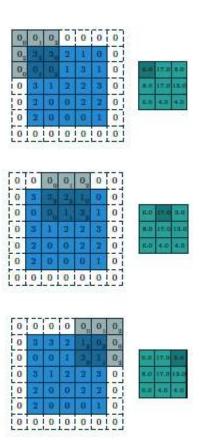




Learning from Images: Convolutional Neural Networks (CNN)

input volume (n_H_prev, n_W_prev, n_C_prev) First filter output (n_H, n_W) convolve Convolve Filter 1 (f, f, n_C_prev) (f, f, n_C_prev) (f, f, n_C_prev) Convolve Filter 2 (f, f, n_C_prev) (f, f, n_C_prev) Convolve Filter 2 (f, f, n_C_prev) Convolve Filter 3 (f, f, n_C_prev) Convolve Convolve Filter 3 (f, f, n_C_prev) Convolve Filter 3 (f, f, n_C_prev) Convolve Convolve Filter 4 (f, f, n_C_prev) Convolve Convolve Filter 5 (f, f, n_C_prev) Convolve Convolve Filter 2 (f, f, n_C_prev) Convolve Convolve Convolve Filter 3 (f, f, n_C_prev) Convolve Convolve Convolve Convolve Convolve Filter 3 (f, f, n_C_prev) Convolve C

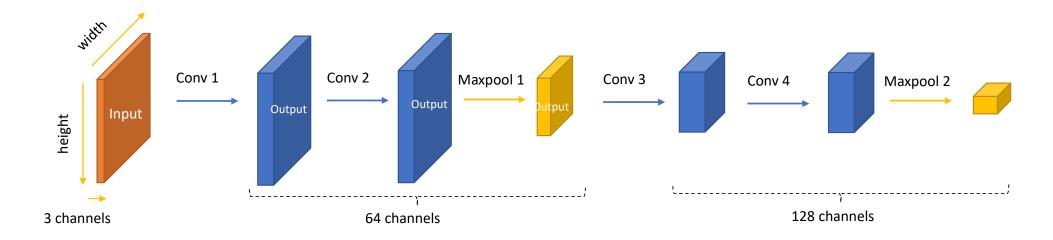
How do convolutions work?



Learning from Images: Convolutional Neural Networks (CNN)

A typical building block architecture for CNN is involving

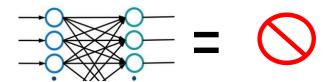
- repeated convolutional layers
 - conserving input width & height;
 - but increasing number of channels/filters;
- followed by a width & height shrinking layer (« Max pooling »: max of n x n area).



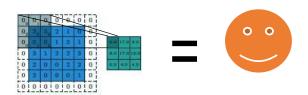
Learning from Images: Semantic Segmentation

Pixel to pixel identification uses

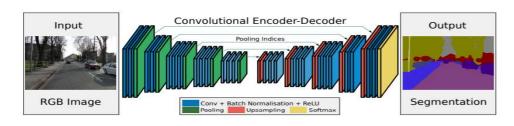
Fully Convolutional Neural Networks No « dense » layers



Only convolutional layers



Encoder-decoder architecture



Aerial Image Labelling / Building detection

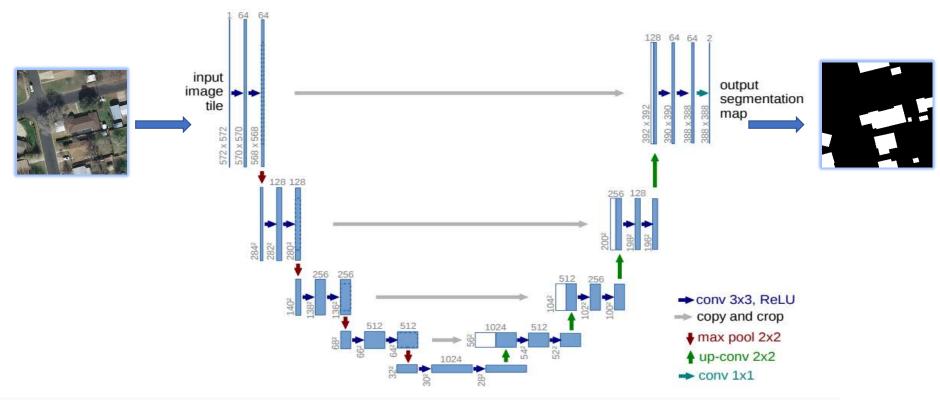
Building detection from aerial images is an example of semantic segmentation.

This application can be used for:

- rooftop sizing for solar panel potential estimate;
- electrical grid design;
- etc.

<u>Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark;</u> Emmanuel Maggiori; Yuliya Tarabalka; Guillaume Charpiat; Pierre Alliez; 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

Aerial Image Labelling / U-Net Architecture

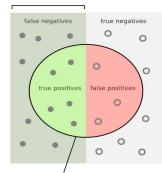


Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation". arXiv:1505.04597 [cs.CV].

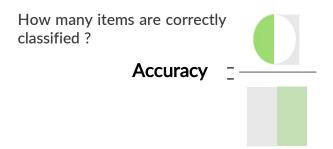
Aerial Image Labelling / Choose your metric!

Accuracy is a standard metric in classification problems.

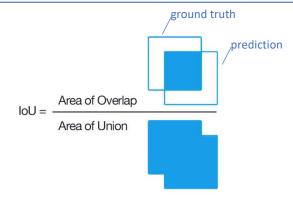
Pixels being actually from a building (ground truth)

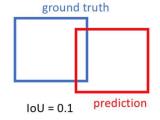


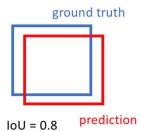
Pixels predicted as building



Intersection over Union (IoU) is a metric adapted for object detection.







Aerial Image Labelling / A Computing Challenge

1. Training Data Set (INRIA):

- 180 tiles with 0.3m resolution, 405 km²;
- Each tile 5000px² (72Mb/image);
- Divided in tiles of 256px²

2. Model Parameters:

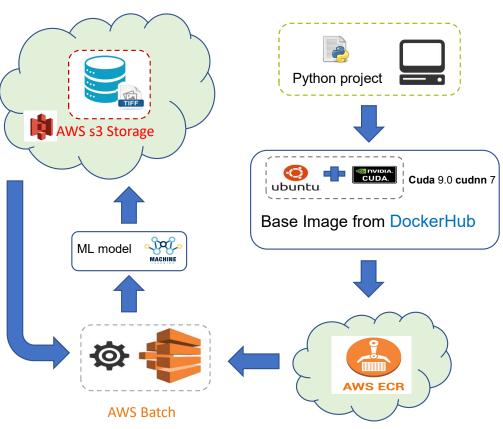
- 22 convolutional layers;
- 18 batch normalization layers;
- Total params: 3,842,241;
- Trainable params: **3,839,297**;
- Non-trainable params: 2,944;

Efficient computation requires vectorization of calculus for a set of sample (the larger the better).

Vectorization is best performed on GPU units.

Hardware is quickly a limiting factor (Performance / Out of memory error).

Aerial Image Labelling / When local resources are not enough



- Working outside your local resources needs to have a deployment strategy that is as simple as possible.
- Automation of the process is key! Production grade solutions are required.
- Docker is used for images/containers management;
- AWS ECR: Containers repository;
- AWS Batch to run heavy jobs (hardware virtualization: CPU/GPU, RAM/HDD);
- AWS S3 for flexible storage: Train data set as input;
 Models as output.

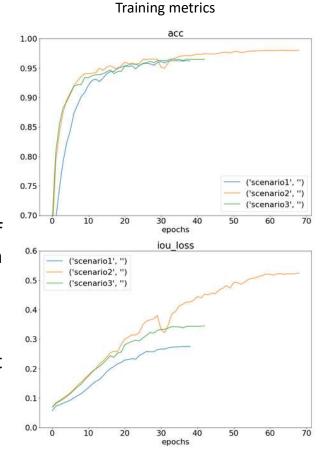
Aerial Image Labelling / Results

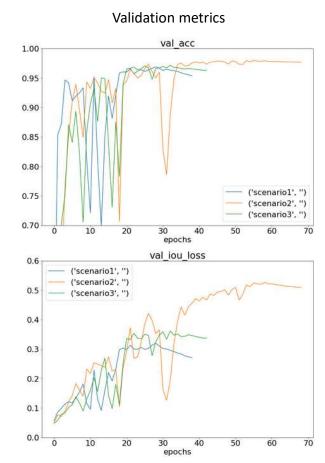
Three data set split scenarios are considered to get:

- 15% of data as test set;
- 85% of data as **train and validation sets** (80/20% train/val. split).

Figures on the right show the evolution of **accuracy** and **IoU** on the train and validation (val) sets along the training process.

Training is stopped when IoU on validation set is no longer progressing.





Aerial Image Labelling / Results

Out of sample quality metrics are assessed on the reserved test set.

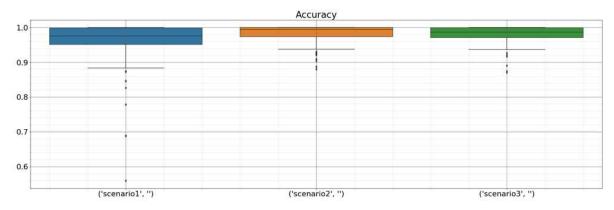
Binarization of the neural network prediction is performed before metrics computation.

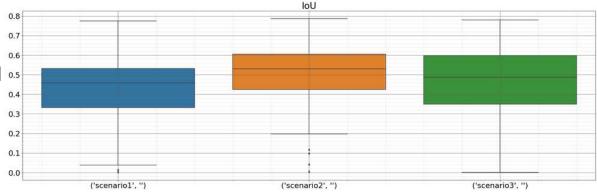
Median out of sample metrics are:

loU (%)	Accuracy (%)
45,7 - 52,9 %	97,5 - 99,5 %

To be compared with SoTa metrics [2] on developed o.5 countries data set of:

	loU (%)	Accuracy (%)
Baseline U-Net	~ 55 %	~ 93 %
SegNet	~ 70%	~ 95 %





[2] B. Bischke, P. Helber, J. Folz, D. Borth, A. Dengel "Multi-Task Learning for Segmentation of Building Footprints with Deep Neural Networks". arXiv:1709.05932[cs.CV].

Aerial Image Labelling / REST Service

Once trained, the model is integrated in a service exposing a REST API for real life

